Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38611470

RESUMEN

Red crown rot (RCR) disease caused by Calonectria ilicicola negatively impacts soybean yield and quality. Unfortunately, the knowledge of the genetic architecture of RCR resistance in soybeans is limited. In this study, 299 diverse soybean accessions were used to explore their genetic diversity and resistance to RCR, and to mine for candidate genes via emergence rate (ER), survival rate (SR), and disease severity (DS) by a multi-locus random-SNP-effect mixed linear model of GWAS. All accessions had brown necrotic lesions on the primary root, with five genotypes identified as resistant. Nine single-nucleotide polymorphism (SNP) markers were detected to underlie RCR response (ER, SR, and DS). Two SNPs colocalized with at least two traits to form a haplotype block which possessed nine genes. Based on their annotation and the qRT-PCR, three genes, namely Glyma.08G074600, Glyma.08G074700, and Glyma.12G043600, are suggested to modulate soybean resistance to RCR. The findings from this study could serve as the foundation for breeding RCR-tolerant soybean varieties, and the candidate genes could be validated to deepen our understanding of soybean response to RCR.

2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047127

RESUMEN

Sudan grass is a high-quality forage of sorghum. The degree of lignification of Sudan grass is the main factor affecting its digestibility in ruminants such as cattle and sheep. Almost all lignocellulose in Sudan grass is stored in the secondary cell wall, but the mechanism and synthesis of the secondary cell wall in Sudan grass is still unclear. In order to study the mechanism of secondary cell wall synthesis in Sudan grass, we used an in vitro induction system of Sudan grass secondary cell wall. Through transcriptome sequencing, it was found that the NAC transcription factor CcNAC1 gene was related to the synthesis of the Sudan grass secondary cell wall. This study further generated CcNAC1 overexpression lines of Arabidopsis to study CcNAC1 gene function in secondary cell wall synthesis. It was shown that the overexpression of the CcNAC1 gene can significantly increase lignin content in Arabidopsis lines. Through subcellular localization analysis, CcNAC1 genes could be expressed in the nucleus of a plant. In addition, we used yeast two-hybrid screening to find 26 proteins interacting with CcNAC1. GO and KEGG analysis showed that CcNAC1 relates to the metabolic pathways and biosynthesis of secondary metabolites. In summary, the synthesis of secondary cell wall of Sudan grass can be regulated by CcNAC1.


Asunto(s)
Arabidopsis , Sorghum , Animales , Bovinos , Ovinos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sorghum/genética , Lignina/metabolismo , Perfilación de la Expresión Génica , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233329

RESUMEN

NAC transcription factors (TFs) could regulate drought stresses in plants; however, the function of NAC TFs in soybeans remains unclear. To unravel NAC TF function, we established that GmNAC12, a NAC TF from soybean (Glycine max), was involved in the manipulation of stress tolerance. The expression of GmNAC12 was significantly upregulated more than 10-fold under drought stress and more than threefold under abscisic acid (ABA) and ethylene (ETH) treatment. In order to determine the function of GmNAC12 under drought stress conditions, we generated GmNAC12 overexpression and knockout lines. The present findings showed that under drought stress, the survival rate of GmNAC12 overexpression lines increased by more than 57% compared with wild-type plants, while the survival rate of GmNAC12 knockout lines decreased by at least 46%. Furthermore, a subcellular localisation analysis showed that the GmNAC12 protein is concentrated in the nucleus of the tobacco cell. In addition, we used a yeast two-hybrid assay to identify 185 proteins that interact with GmNAC12. Gene ontology (GO) and KEGG analysis showed that GmNAC12 interaction proteins are related to chitin, chlorophyll, ubiquitin-protein transferase, and peroxidase activity. Hence, we have inferred that GmNAC12, as a key gene, could positively regulate soybean tolerance to drought stress.


Asunto(s)
Sequías , Glycine max , Ácido Abscísico/metabolismo , Quitina/metabolismo , Clorofila , Etilenos , Regulación de la Expresión Génica de las Plantas , Peroxidasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Glycine max/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transferasas/metabolismo , Ubiquitinas/metabolismo
4.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216225

RESUMEN

Bacterial leaf pustule (BLP), caused by Xanthornonas axonopodis pv. glycines (Xag), is a worldwide disease of soybean, particularly in warm and humid regions. To date, little is known about the underlying molecular mechanisms of BLP resistance. The only single recessive resistance gene rxp has not been functionally identified yet, even though the genotypes carrying the gene have been widely used for BLP resistance breeding. Using a linkage mapping in a recombinant inbred line (RIL) population against the Xag strain Chinese C5, we identified that quantitative trait locus (QTL) qrxp-17-2 accounted for 74.33% of the total phenotypic variations. We also identified two minor QTLs, qrxp-05-1 and qrxp-17-1, that accounted for 7.26% and 22.26% of the total phenotypic variations, respectively, for the first time. Using a genome-wide association study (GWAS) in 476 cultivars of a soybean breeding germplasm population, we identified a total of 38 quantitative trait nucleotides (QTNs) on chromosomes (Chr) 5, 7, 8, 9,15, 17, 19, and 20 under artificial infection with C5, and 34 QTNs on Chr 4, 5, 6, 9, 13, 16, 17, 18, and 20 under natural morbidity condition. Taken together, three QTLs and 11 stable QTNs were detected in both linkage mapping and GWAS analysis, and located in three genomic regions with the major genomic region containing qrxp_17_2. Real-time RT-PCR analysis of the relative expression levels of five potential candidate genes in the resistant soybean cultivar W82 following Xag treatment showed that of Glyma.17G086300, which is located in qrxp-17-2, significantly increased in W82 at 24 and 72 h post-inoculation (hpi) when compared to that in the susceptible cultivar Jack. These results indicate that Glyma.17G086300 is a potential candidate gene for rxp and the QTLs and QTNs identified in this study will be useful for marker development for the breeding of Xag-resistant soybean cultivars.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Glycine max/genética , Enfermedades de las Plantas/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Genotipo , Fenotipo , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...